East Timor and Climate Change: Security and Sustainable Development

 

Merrilyn Wasson

Australian National University

International Human Dimensions of Global Environmental Change Program: UNESCO/ICSU

Executive Summary

The international and scientific consensus that climate change is a reality,  which is already making an impact is supported by observable and predicted trends. In response to the risk to human security, a UN sponsored Frame work Convention on Climate Change has been ratified. However, the negotiation of its Protocol, which will make reductions in emissions of Greenhouse gases a legally binding commitment for industrial, developed nations, has slowed. This gives East Timor an opportunity to participate in the negotation of  the Protocol.

 

The underlying reality  of the 21 st Century is that development cannot be considered ‘sustainable’ unless it takes into account the likely impact of climate change. Sustainable development is development which, in addition to other objectives, either seeks to reduce emissions of the greenhouse gases that are the cause of climate variations, or which aims to assist the nation to adapt to the projected effects of climate change.

 

As a consequence, the Protocol to the Climate Change Convention contains two funding mechanisms dedicated to sustainable development, greenhouse gas reductions and adaptation aimed at reducing the risk to human security.

 

East Timor and the Risk to Security from Climate Change

 

East Timor is a nation which is particularly vulnerable to climate variations, from a combination of sea level rise, a predicted increase in the frequency and severity of El Nino droughts and changes to monsoonal patterns. To the present it has made a very small contribution to the problem, but the export of fossil fuels from the Timor Gap will change that. Yet this also gives East Timor a distinct opportunity to assist with reduction in global emissions, while insisting on sustainable growth which minimises the risk

 

Sustainable Development, Exports of Fossil Fuels and the Funding Mechanisms

 

From encouraging the export and domestic use of liquid gas in preference to Petroleum, to using the Protocol funding mechanisms to support the introduction of new tidal energy technology, East ‘s energy sector is in an excellent position to become a model of sustainable growth. The nation may also use mangrove rehabilitation as a multi purpose sustainable development that assists with coastal sea level rise problems, the need for increased fish stocks and acts as an ‘absorber’ or sink of CO2 . Other developments such as crop adaptation to cope with climate variability and sustainable reforestation are also worth investing in, for the sake of the needs of the East Timorese as well as for Export. The purpose of the draft paper is to stimulate thought and discussion about the merits of these and other options, while reinforcing the need to consider climate change projections in all calculations of sustainable economic growth.

1. Introduction: Sustainable Development in Changing Climatic Conditions

It is a reality of the 21stCentury that planning for sustainable development must take into account the changes to the Earth’s climate and ecosystems that are the result of non-sustainable emissions of greenhouse gases into the atmosphere. The projections are  stark.  Carbon dioxide is the most prevalent and problematic of the greenhouse gases. It has now reached a concentration in the earth’s atmosphere that is approximately 66% higher than at any time during the existence of humans on the planet. Much smaller increases in CO2  in the past historical record have resulted in significant disturbances to the planet’s climate systems.

 

Accordingly, almost every nation has ratified the UN Framework Convention on Climate Change  (UNFCCC) and accepted that:

§         climate change is a reality and its effects are already noticeable and profound, and

§         climate change is a serious threat to food and water security, and therefore to human health and security, and

§         it is therefore a hazard to economic growth and sustainable livelihoods.

 

Despite this international consensus, the negotiation of the Protocol to the Convention , which will commit industrialised nations to an average 6% reduction on 1990 levels of greenhouse gas (GHG) emissions, broke down in November, 2000. Negotiations will resume in mid 2001, in an attempt to resolve the disputed details of the Protocol.

 

This delay in the negotiations gives East Timor the chance to contribute to the debate on the controversial issues  of the Protocol, an opportunity which should be seized. For East Timor not only faces serious problems from climate change, but the nation has much to gain from a strategy that simultaneously promotes sustainable development and assists the island to adapt to the impacts of climate change.

 

Funding for sustainable development is an integral part of the Convention on Climate Change and its Protocol. One financial provision of the Protocol, the Clean Development Mechanism (CDM), is dedicated to promoting sustainable growth and reducing greenhouse emissions in developing nations. A second provision, the ‘Adaptation and Mitigation Fund’ is for nations that are especially vulnerable to the impact of climate change. East Timor will benefit from both sources of funding.

 

 

 1.1  The  Theme:

Using the financial provisions of the Protocol to fund sustainable development that assists East Timor to reduce GHG emissions and adapt to the impact of climate change is the theme of this  paper.

 

What follows is a summary analysis of three factors:

§         the predicted impacts of climate change in the region that includes this nation;

§         the likely contribution that East Timor will make to global GHG emissions, and

§         the Protocol’s funding provisions for sustainable development, the important criteria being that the development must also reduce GHG emissions and/or concentrations of the gases in the atmosphere.

 

With this information, it is possible to outline a strategy for sustainable development that uses the Protocol’s funding mechanisms, which is particularly suited to mitigate the risks to the security and sustainable livelihoods of East Timorese from the disruptions of climate Change

 

2.0 The Vulnerability of East Timor to Climate Change

 

2.1 Coastal Impacts: Rising Sea Level: Reduction in Fish Habitats:

East Timor shares the vulnerability of all island nations to sea level rise that accompanies the melting of the ice cover of Antartica and the Arctic Polar ice cap. That melting is  underway.

 

One early effect for East Timor will therefore be a shifting coastline and a partial loss of the tidal ecosystems that are essential for fish breeding habitats, most notably mangroves and seagrasses.(Fox, Applegate and Wasson, 2000)

 

This grim scenario for shoreline fish habitats is worsened by the reality that the first ecosystem to show signs of global disintegration from an increase in CO2 absorbed by tthe oceans are corals. While there is a scientific dispute about the processed by which increased CO2 in the oceans destroys corals, there is no dispute about the reality that climate change is a major factor in the stress and rapid decline of coral ecosystems thoughout the globe.

 

The coral ecosystems of the Arafura and Timor Seas and the Sunda Shelf are no exception, and since the El Nino episode of 1997/98 have experienced some of the worst bleaching and decline of all tropical coral reefs (Wilkinson et al 2000)..

 

Mangroves, seagrasses and corals  are important for another reason, they have the ability to ‘sink’ or reduce the concentration of carbon in the atmosphere. (Asuki 1998) When stressed or destroyed, however, they emit that carbon back into the atmosphere. Sustainable development strategies to counter the loss of these ecosystems and increase fish stocks must therefore be a priority for the funding mechanisms of the Protocol. While this applies to most tropical developing nations, East Timor has some strategic advantages to be discussed below.

2.2 Climate Variability, Crops and Vegetation:

 

A longer term impact of concern is the effect that climate variations will have on agriculture. The majority of nations which have ratified the Convention are likely to be effected. Whether it is wet rice production in Southeast Asia and China, or dry wheat production in India, Australia, the US and so on, crops rely on a degree of certainty that the climate system provides.

 

As climate variability is a feature of climate change, the global impact on food security is of such concern that it is a major motivating factor in the international acceptance of the need to reduce emissions and slow the pace of Climate Change.

 

Where the national or regional climate relies on a monsoon, the risk is greatest. East Timor is one nation affected by monsoonal patterns.

 

A scientific question that featured prominently in the debates over the Protocol is “Will species of trees, other biodiversity and crops be able to adapt to changing and highly variable climate patterns.”  It is an issue that is discussed in the Special Report on Land Use, Land-use Change and Forests (IPCC  2000), prepared for the recent negotations of the Climate Change Protocol.

 

 It is feared that in a time span of less that fifty years, the inability of flora and fauna and crops to cope with climate variability will be a major problem, and as a consequence, there will be a significant loss of forests and crops.

 

2.3 Increase in  El Nino Frequency

 

In common with Southeast Asia and the Pacific, East Timor and its closest neighbours are affected by the droughts that accompany El Nino events. Caused by a hot pool of water in the Pacific Ocean, it is now thought that the frequency and severity of El Nino events may be increased by climate  change. (CSIRO 1999).

 

Unfortunately for all the nations affected by El Nino events, this may mean that the failure of some tree and crop species to adapt to climate change may occur ealier than in the period predicted by the Special Report on Land Use, Land-use Change and Forests (IPCC  2000). As with the impact on the coastal ecosystems, the predicted changes to the crops, tree species and biodiversity  of East Timor is grim one.

 

Together, these projections present a bleak outlook for food and water security, health  and sustainable livelihoods of the East Timorese population, unless strategies for sustainable development which also assist the nation to adapt to increased climate variations are found.

 

2.4 East Timor’s Contribution to Greenhouse Gas Emissions. East Timor’s contribution to global GHG emissions has almost certainly been negligible While no study of national sources and sinks of greenhouse gases has yet been done, it is reasonable to assume that some methane (CH4) is emitted from agriculture and livestock, and  some Co2 from land and forest clearing. The extent to which regrowth and natural sinks of carbon compensate for these emissions is also not known.

However, this is about to change, as East Timor rightfully takes control of fossil fuel sources in the area of the Timor gap and the Arafura that falls within the nations Exclusive Economic Zone.

 

Petroleum and Liquid Gas : Producion and export of petroleum and liquid gas will increase East Timor’s national GHG  emissions. However, it also presents an opportunity to promote sustainable development which also reduces carbon emissions, at least where the export of liquid gas is concerned. The fossil fuels, coal, petroleum and liquid gas, which are the major contributor to human induced carbon emissions. However liquid gas produces the least CO2 per unit of energy, and replacing coal and petroleum with liquid gas reduces the amount of CO2 emitted. Using and exporting liquid gas is a more sustainable option for energy is discussed below

 

3.0 The Protocol and its Mechanisms for funding Sustainable Development

 

In the heat of the debates over the details of the Climate Convention’s Protocol, a most fundamental objective of the UNFCCC is often forgotten. The Climate Change Convention has two objectives: one is to reduce GHG emissions into the atmosphere, the other is the promotion of Sustainable Development (Art.2 UNFCCC, Preamble to the Kyoto Protocol).

 

It was at the behest of the G77 bloc of developing nations that assistance with sustainable economic growth became embedded in the Convention and its Protocol, as the price for cooperation with GHG emission reduction. The Clean Development Mechanism (Art.12 of the Kyoto Protocol) is the means by which the UN Framework Convention on Climate Change and its Protocol achieve the dual objectives of reducing GHG emissions and promoting sustainable development.

 

3.1 The Clean Development Mechanism (CDM)  in Summary

 

The CDM is an investment by a private or public enterprise from an Annex 1 nation, in a project in the host developing nation which provides the service of GHG emission reduction. The host nation, company or community maintains full or part ownership of the project and the profits from it, while the investor receives credits for the GHG reductions.

 

CDM investment:  Advantages for Developing Nations

§         As foreign direct investment, CDM funding does not increase national debt, a fact that makes it very acceptable form of investment for developing nations.

§         Approval for the CDM project is at the discretion of the host nation, which is expected to be able to direct investment into national priority areas.

§         The CDM project must meet the criterion of sustainability and it is expected to provide collateral socio-economic or ecological benefits.

The Key features of the CDM are:

* investment must promote sustainable development in the host nation. (12.2) and the host nation must benefit from the project activities resulting in emission reductions (12.3 (a).

* A CDM project must provide real, measurable and long-term benefits related to the mitigation of climate change (12.5. (c).

* The 'certified emission reductions' achieved by the CDM projects are to assist Annex nations to comply with their emission limitation targets (12.3(b)). (Obviously, the same project will reduce the net GHG emissions of the host developing nation).

* CDM projects may be established from the year 2000, and the carbon 'credits' obtained 'banked' by the investing company or nation, to help meet their emissions reduction target for the first commitment period, between 2008 and 2112(12.10).

* The certified emission reductions (CER) which CDM projects produce will be subject to verification by an Executive Board of the CDM, set up by the Parties to the Protocol (12.9)

* All projects must be voluntary between the Parties (12.5(a)).

 

Additionality The 'additional' requirement is that there must be: 'reductions in emissions that are in addition to any that would occur in the absence of the certified project activity' (12.5(c)). This has caused some confusion. The IPCC Special Report on Land Use, Land-use Change and Forestry, prepared for the parties to the Protocol,  identifies three forms of 'evidence' that establish additionality in a project:

 

§         Technological -the introduction of new technology or practices that result in emission reduction in comparison with currently used technology or practices.

 

§         Institutional - the removal of institutional constraints for the purpose of the project; and

 

§         Financial- the process of assuring a reduction in GHG's has incurred additional costs, in comparison with business-as -usual practice. [IPCC 2000].

 

In addition to the project profits, the  socio-economic and ecological collateral, the technology transfer and the reduction in emissions from the CDM project, some host developing nations are  expected to benefit from the CDM in one other essential respect , the adaptation fund.

 

 3.3 The Adaptation Fund and East Timor

 

The Kyoto Protocol envisages a tax on its ‘flexibility mechanisms’, including the CDM, The other flexibility mechanisms, Emissions Trading (Art 17) and the Joint Implementation Mechanism involve trading in emissions reductions between Annex I nations.only. The purpose of this tax is to establish the “Adaptation Fund” which will be used to assist developing nations 'particularly vulnerable to the adverse effects of climate change to meet the costs of adaptation' (Art. 12.8). East Timor is clearly in the category of being particularly vulnerable to adverse affects.

4.0 Sustainable Development Strategies for Climate change adaptation

 

To sum up, East Timor’s development is at risk from the negative impacts of climate change, with sea level rise and severe climate variabililty  presenting a significant threat to the nation’s food and water security and human health as well as sustained economic growth. East Timor’s contribution to the problem of human induced emissions has been minor, though the possession and export of petroleum and liquid gas will change that.

 

What is clear is that planning for sustainable development that does not include planning for climate change adaptation is unlikely to be ‘sustainable’ in the short, medium and long term

 

The options for sustainable development briefly outlined here are based on concepts which have been applied in tropical developing island nations facing similar risks and with some similarities in ecosystems. But there will be options unique to the nation, and the CDM encourages each nation to work out its priorities. Before discussing the use of the CDM and the Adaptation fund, there are options generated by East Timor’s resources that may be used as part of a national growth strategy>

 

4.1 Liquid Gas Resources

 

As discussed above, liquid gas is a source of CO2 emissions, but it is a form of energy which emits much less than either coal or petroleum. Therefore, replacing either coal or petroleum with liquid gas counts as an emission reduction. Assuming that the Timor gap yields liquid gas as well as petroleum, then East Timor will be benefiting  both its own economy and security and that of the globe by promoting the export of the liquid gas.

 

There is a growing demand for liquid gas in the Asia Pacific region, driven by climate concerns and by economic efficiency, so this strategy is certain to yield positive results. It is moreover, one that the ‘Energy Companies’ operating in the Timor gap are keen to pursue with the future East Timorese government.

 

4.2 Sustainable Energy from Tides

 East Timor may wish to pursue non-fossil fuel energy sources, through either CDM investment in a sustainable energy project or by the Adaptation fund. In areas where the tidal differences are Tidal energy has long been an attractive option for nations with substantial tidal variations; new technology makes this an even more attractive, low costs and emission free energy option for islands.

 

4.3 Mangrove Reforestation: CDM Investment with outstanding Socio- economic and Ecological Collateral Benefits

 

Over 50% of the world's Mangrove forests have been destroyed, (WRI 2000)and with them a fish breeding habitat, a filter of soil carbon and a protector of other habitats, notably sea grasses and coral reefs [Ayukai (ed.), 1998].. Without the filter of mangroves, sediment from the coasts contribute to fish habitat destruction, to the impoverishment of coastal communities, the poorest and most vulnerable of socio-economic groups. Mangroves are essential to reversing fish habitat loss, and to restoring the coastal fishing industries. Mangroves are now regarded as a 'keystone species' for tropical coastal ecosystems. [Fox, Applegate and Wasson (ed) 2000].

 

Of especial significance to an island nation like East Timor is the ability of mangroves to store coastal sediment. There is now evidence that mangroves may also have a role in slowing and assisting coasts to adapt to sea level rise. What is certain is that mangrove forests are not only a vital fish habitiat, but they protect adjacent fish habitiats, seagrasses and corals from pollution.

 

 4.3.1 Carbon sequestration in mangrove ecosystems, seagrasses and corals

Between 1996 and 1998, experiments were conducted by the Japanese power utility KEPCO and the Australian Institute of Marine Science to determine the Carbon sequestration capacity of mangroves. The experiments were conducted in tropical Australia on a coastal strip adjacent to the area with the highest rate of land clearing, to emulate conditions in Southeast Asia. The results of these experiments were expressed in one phrase: the carbon stock per unit area of the mangrove ecosystem is enormous. The reason is that mangroves store carbon both above and below ground. [Ayukai  1998].

 

It should be noted that it is the entire mangrove ecosystem that acts as a sink, as mangroves themselves are slow growing. The carbon that is being stored is drawn not only from the atmosphere, but also from organic soil run-off that would otherwise enter the atmosphere or the coastal habitats. Permanent mangrove reforestation probably qualifies among the highest yield form of sink sequestration.

 

4.3.2 Socio-economic Collateral Benefits from Mangrove Regeneration

Community based sustainable development The ecological benefits discussed above, from the protection of sea grass and coral reef fish habitats from land sediment flows and the restoration of a major fish habitat in mangrove swamps themselves, result in the socio-economic benefits of the restoration of the livelihood of coastal fishing communities. This can occur immediately with the employment of villages in the establishment phase of the mangrove reforestation project. It will also contribute to the long term survival of the fishing industry.

 

§         Exports of mariculture and fish The Asia Pacific region now cannot supply the  demand for fish. It is possible to increase the export of fish from mangrove based mariculture, which is economically more efficient than aquaculture. The removal of mangroves to make way for shrimp aquaculture is now regarded as unnecessary, since mangroves can support the farming of multiple species [Ayukai (ed.), 1998].

§         Potential Investors Japanese investment in Mangrove CDM projects can almost be guaranteed, as the interest of Japanese-based companies in Mangrove experiments indicates. For dwindling fish stocks within Southeast Asia and the Asia- Pacific is a major concern for investors from a nation where fish is a dietary staple. Australian companies operating in the Timor and Arafura Seas are also indicating an interest in funding mangrove rehabilitation in exchange for Carbon credits.

 

4.3 Reforestation

 

The area available for reforestation and sustainable production forestry may be limited in East Timor but is worth investigating as an option, for reforestation and rehabilitation of degraded forests has the effect of sequestering carbon from the atmosphere.

 

CDM projects established with the purpose of rehabilitating degraded forests to the standard of natural or production forests, and CDM projects for the establishment of industrial plantations, therefore have the combined effect of reducing concentrations of carbon in the area and establishing a much needed export industry in the region.

 

4.3.1 Rehabilitation of Degraded Forests :Ecological and Economic Benefits

There are differences between the  ecological and socio-economic benefits from the rehabilitation of severely degraded forest for selective, low impact logging and the establishment of  industrial plantations on afforested areas. In general, the former provides more ecological collateral benefits including:

* Improvement in water quality as a consequence of regrowth. This is one reason why China is directing CDM investment into rehabilitation and reforestation around river catchments. 

* Soil stabilization and improved nutrient quality of soil biomass.

* Qualified restoration of biodiversity. Since ecosystems are dynamic, it is unlikely that the recovery of a forest will result in identical flora composition,  but it is likely to support an increase in both flora and fauna biodiversity.

 

*Given the greater capacity of tropical forests and tropical species to sequester carbon, CDM investment in either the rehabilitation of natural forest or in industrial plantations of tropical hardwood species, should yield high returns in credits for CER units.

 

*Reforestation/rehabilitation sequestration projects will probably have the additional investment benefit of carbon storage during the project cycle. Low impact harvesting on maturity and using the timber harvested for durable wood products such as paneling, building and construction and furniture, all result in long term carbon storage.

4.3.2  Plantations,  Soil Conservation and Full Carbon Accounting

Single species plantations produce less ecological side benefits, but have many socio-economic benefits, in the form of employment and timber products for domestic and global markets.

 

With single species plantations, loss of soil can reduce the carbon sequestered by the growing trees. As tropical soils are generally low in nutrients  repeated growth cycles followed by heavy impact harvesting have had negative impacts on soil quality, in addition to exacerbating the problem of soil run-off. Where burning has been used to clear land for plantations, soil run-off increases tenfold and the water retention capacity of the soil is reduced [Schweithelm, 1999]

 

As a consequence of these problems, it is probable that assessing the CER of plantation sink projects will require the use of 'full carbon accounting', which offsets emissions from soils disturbed during harvesting as against the sequestration and storage of the trees.

 

This requirement will encourage the use of soil conservation techniques at sensitive stages of the project cycle, including mulching litter and placing it over the soil to maintain organic carbon and other nutrients and re-planting the stock in the mulch. The result is reduced run-off, little need for fertilizer and a net reduction in soil emissions to complement the atmospheric emissions reductions [Bruenig 1996].

 

CDM investment in Reforestation and Plantations: Summary

The  contribution of CDM project investment to the long term sustainability of forest ecosystems and to forest products for both the domestic market and for exports  has both ecological and socio-economic benefits for East Timor, benefits that will be maximized if what is exported has value added in the nation.. However, controversy has surrounded CDM investment in sustainable forestry, because of the ‘reversibility’ of forest projects (they can become sources of emissions unless sustainable forestry is carefully practiced) Uncertainty over the capacity of some species to adapt adds to the debate.  Mangrove ecosystem rehabilitation is much less controversial, as mangroves will usually be planted as the basis for other commercial activities such as the restoration of fishing grounds and mariculture.

 

4.4 Biotechnology and Crop Adaptation

 

Crops are essential for sustainable livelihoods, yet are a source of methane, one of the greenhouse gases. An appropriate use of funding from either CDM project investment or the Adaptation and mitigation fund is the genetic emgineering of crops with the aims of:

§         Reducing the methane and other greenhouse gases emitted;

§         Increasing food security by producing plant breeds that are able to resist extreme climate variations; and

§         Increasing the yield per acre, while minimising the drain on soil nutrients.

 

Conclusion

East Timor is in a unique position to base its economy on sustainable economic growth that enables the island nation to adapt to and minimise the impact of climate change. As  a nation whose food, water and human security is very vulnerable to the risks of sea level rise and extreme climate variability, East Timor should be able to attract significant  funding from the provisions in the Protocol to the Climate Change Convention for greenhouse gas emission reducing sustainable development.

 

The existence of petroleum and liquid gas in the Timor gap may well make  East Timor a net emitter of carbon, but it also gives future governments of Timor a unique opportunity to put pressure on the Energy companies to maximise the use of liquid gas, as fossil fuel with the lowest emissions per energy unit.

 

It also places the nation in an excellent position to negotiate Clean Development Projects in other sectors including mangrove and fish habitat rehabilitation, reforestation, plantations, climate variation resistant crops and new tidal energy technologies. The essential theme of all sustainable development is that it must take into account, and minimise the impact of climate change.

 


Bibliography

 

Abromovitz, J.N. and A.T.Matoon, 1999 ‘Reorienting the Forest Products Economy’ in L.R.Brown, C.Flavin and H.French (eds) State of the World [WW Norton, New York]

 

Aon Insurance Carbon Team 1999 A Strategic Framework Approach to Implementation of the Kyoto Protocol  [Moscow, Occassional Paper]

 

Ayukai, T. (ed) 1998 ‘Carbon Fixation and Storage in Mangroves’ Mangroves and Salt Marshes  Vol. 2, No. 4. December 1998

 

Apps, M.J. and D.T.Price (eds) 1996 Forest Ecosystems, Forest Management and the Global  Carbon Cycle [Springer-Verlag, Berlin]

 

Bennett, CPA and Hutabarat, S 1997, Toward Outcome Based Regulation of Logging in Natural Forest Concessions and Community Forests, Natural Resources Management Project (USAID), Jakarta

 

Bennett, C.P.A Ensuring a Future for Indonesia’s Natural Forests : Resources and Governance  World Bank Report, Jakarta 1999

 

Byron, N 1997 Policy Options for the Forestry Sector in the Asia Pacific Region [FAO, Rome]

 

Carrere,R. and L.Lohman, 1996 Pulping the South, Industrial Tree Plantations and the World Economy [Z Books, London]

 

Centre for International Environmental Law 1998, Carbon Conservation: Climate Change, Forests and the Clean Development Mechanism [Washington, DC]

 

Chair’s Summary 1999 The Consultative Meeting on the Kyoto Mechanisms Bali Indonesia, August 30-31, 1999

 

CSIRO Division of Atmospheric Research 1999 El Nino Frequency and Elevated CO2

 

Dauvergne, P 1997 Shadows in the Forest: Japan and the Politics of Timber in Southeast Asia  [Cambridge, MIT Press]

 

Di Nicola, A et al 1997 Opportunities forForestry Investment in Asia and the Pacific through Carbon Offset Initiaitves [FAO Bangkok October 1997]

 

Douglas, J 1998-9 Sector Adjustment for Forests in Indonesia: Issues World Bank Paper

 

Dove, M.R. 1999 ‘The Theory of Social Forestry Intervention: the State of the Art in Asia’ Agroforestry Systems, Vol 30, pp315-340

 

FAO: 1995 Expert Meeting on the Harmonization of Criteria and Indicators for Sustainable Forest Management  [FAO Rome]

 

FAO 1997 State of the World’s Forests [FAO Rome]

 

FAO 2000 Asia Pacific Forestry Towards 2010 [FAO, Rome ]

 

Hardner, JJ et al 2000 Prospects for Mitigating Carbon, Conserving Biodiversity and Promoting SocioEconomic Development through the Clean Development Mechansim

Mitigation and Adaptation Strategies for Global Change (in press).

 

IGBP-LOICZ Project 1998 Rapid Environmental Change in Central Sumatra:ecological and socio- economic impacts in coastal environments Report, NUS, Singapore

 

International Contact Business System, 1997 Study on Oil Palm Plantations and Marketing, [ICBS, Jakarta]

 

International Institute for Environment and Development, 1996 Toward A Sustainable Paper Cycle [IIED, London]

 

ITTO. 1990. ITTO guidelines for the sustainable management of natural tropical forests.

ITTO Technical Series 5. ITTO, Yokohama, Japan..

 

Jepma,C. 1995 Tropical Deforestation: A Socio-economic approach [Earthscan London]

 

Jepma,C.J et al 1997 ‘Carbon Sequestration and Sustainable Forest Management: Common Aspects and Assessment Procedures’ Critical Reviews in Environmental Science and Technology, Vol 27

 

Johnson, N, and Cabarle, B 1993 Surviving the Cut: Natural Forest Management in the Humid Tropics [World Resources Institute, Washington, D.C]

 

Kanowski, P. et al 1992‘Plantation Forestry’ In N.P Sharma (ed)  Managing the World’s Forests [Kendall Hunt, London]

 

Kanowski, P and M Wasson 2000 A Synthesis Review of Forest Policy Issues in the Asia Pacific Region Paper prepared for the World Bank Forest Policy and Strategy Review Consultation Singapore April 26 to 30, 2000

 

Kelly, C and N Helme 2000 Ensuring CDM Project Compatibility wity Sustainable Development Goals[Centre for Clean Air Policy, September 2000]

 

Leining ,CR 2000  The Eligibility of Land Use, Land use Change and Forestry Projects under the Clean Development Mechanism, [Centre for Clean Air Policy, September 2000]

 

Leungarasami,P and N.Rajesh (eds) 1992 The Future of the Peoples and Forests of Thailand after the Logging Ban [Project for Ecological Recovery, Bangkok]

 

Lund, H.G. 1998 Definitions of Forest, Deforestation, Afforestation and Reforestation [Integrated Resource Inventories and Assessments, Virginia]

 

McLaren, J.P 1996 ‘Plantation Forestry-its role as a Carbon Sink: conclusions from calculations based on New Zealand’s Planted Forest Estate’ In Apps, M.J. and D.T.Price (eds) 1996 Forest Ecosystems, Forest Management and the Global Carbon Cycle [Springer-Verlag, Berlin]

 

Mergen, FR and JR Vincent (Eds). 1987. Natural management of tropical moist forests. School of Forestry and Environmental Studies, Yale Univ.

 

Murdyarso, D, L.Lebel, A.N.Gintings, S.M.H. Tambapulon, A.Heil, T.Tomich and M.Wasson, 1999 “Policy Responses to Complex Environmental Problems” Journal of Agriculture and the Environment 

 

Murray, B.C. 1999 ‘Economic Incentives for Forest Carbon Sequestration under the Kyoto Protocol’ Unpublished paper: Centre for Economic Research, NC, US.

 

Pinard, M  and Putz, F, 1997 ‘Monitoring Carbon Sequestration Benefits Associated with Reduced Impact Logging in Malaysia’  Mitigation and Adaptation Strategies for Global Change2, 203- 215

 

Pinard, P. 1995 ‘Creating Timber Harvest Guidelines for Reduced Impact Logging in Malaysia’ Journal of Forestry, October 1995

 

Potter, L and J.Lee, 1999 Oil Palm in Indonesia: Its Role in Forest Conversion and the Fires of 1997/98 [WWF, Jakarta]

 

Poore, D. (Ed) 1989. No timber without trees. IIED/ Earthscan.

 

Sari, A and M Wasson 2000 Clean Development Mechanism: Perspectives from Developing Counties [US Environmental Protection Agency]

 

Smil, V, and Mao Yushi 1998  The Economic Costs of Environmental Degradation [ American Academy of the Arts and Sciences, Cambridge, MA, USA]

 

State Ministy of the Enviroment, Republic of Indonesia  First National Study of Climate Change

 

Sughandy, A 2000 'Perspective of CDM Projects under the Kyoto Protocol Implementation'' Paper presented at the 'Workshop on Terrestrial Carbon Assessment for Possible Trading under CDM Projects' Bogor, Indonesia, February 28/29,2000

 

Trexler, M 1998 Innovative Forest Financing Options and Issues: Forest Conservation and Management for Climate Change Mitigation  [UNDP]

 

UNDP, UNEP, Word Bank and the WRI 2000 World Resources 2000 and 2001: People and Ecosystems, The Fraying Web of Life

 

Wakker, E  1999  Forest Fires and the Expansion of Indonesia’s Oil Palm Plantations  WWF  Indonesia Fires Project

 

Wasson, M 1999 Sustainable Forest Management and Timber Trading in the Asia Pacific Region Paper for EU/Australia Consultations on Trade and the Environment

 

Wasson, M , 2000 ‘ Sinking Carbon in Kalimantan' Inside Indonesia,  April-June,

 

Wells 2000. In RAS/97/330 Regional consultation 1999

 

World Bank 1998, The Environmental Impact of the East Asian Financial Crisis [The World Bank, Washington, D.C.]